Methods to Sample *E. coli* in Foreshore Sand and Pore Water

Great Lakes Beach Association Meeting October 29, 2015

Laura Vogel
Tom Edge
Denis O'Carroll
Clare Robinson

Introduction

- E. coli is often orders of magnitude higher in sand/porewater near the shoreline than shallow lake waters
 - Acts as non-point source for contaminating lake water
- Health units do not currently sample the foreshore reservoir
 - "Sampling for microorganisms in sand should... be considered for inclusion in regulatory programmes aimed at protecting recreational beach users from infectious disease" (Solo-Gabriele et al. 2015)

Current sampling methods

- 1. Unsaturated foreshore sand (Enns et al. 2012, Phillips et al. 2015, etc.)
- 2. Saturated foreshore sand (Yamahara et al. 2007, Staley et al. 2015, etc.)
- 3. Foreshore pore water (Boehm et al. 2004, Skalbeck et al. 2010, etc.)

How should we quantify the foreshore reservoir?

Can we compare between studies?

Objectives

Determine the impact of sampling methods on quantification of *E. coli* in the foreshore reservoir.

- 1. Do *E. coli* concentrations vary with sampling method?
 - Considering all beaches?
 - Considering individual beaches?
- 2. Which sampling methods are the least variable?

Study Sites

Sand Grain Sizes for Sites

Moisture Content of Unsaturated Sand

Organic Content (%)

Current sampling methods

Methods Sampling

Surface Water

Methods Sampling - pore water

Shovel Careful Excavation Drive Point

1

2

3

Methods Sampling — unsaturated sand

Unsaturated Sand A

Unsaturated Sand B

Methods Sampling — saturated sand

Shovel

Careful Excavation

5 cm above and below water table

Core

1 2 3

Do *E. coli* concentrations vary with sampling method? Considering data for individual beaches

Pore Water Methods

Drive point method resulted in lower concentrations for all beaches except Bayfront Park.

Saturated Sand Methods

Too variable. No significant results.

E. coli distribution

- Standardized by volume (CFU/cm³)
- Using shovel, careful extraction, and core releases (in order) more E. coli from sand resulting in lower % amount in sand and higher % amount in porewater

Do *E. coli* concentrations vary with sampling method? Considering data for all beaches

Comparing methods – Pore water

	N	Median (CFU/100mL)
Shovel	78	3300
Careful Excavation	78	960
Drive Point	78	510

p-values	Shovel	Careful Excavation
Shovel		
Careful Excavation	0.2990	
Drive Point	0.0029	0.0538

Shovel and careful extraction methods results in higher pore water concentrations than drive point.

Western & Engineering

Comparing methods – unsaturated sand

 Unsaturated sand A had statistically higher concentrations than unsaturated sand B (p=0.0041)

 Unsaturated sand A had statistically more variable concentrations than unsaturated sand B (p=0.014)

Comparing methods - Saturated sand

	N	Median (CFU/g)
Shovel	78	20.1
Careful Excavation	78	20.6
Core	78	21.9
Unsaturated	78	376.7

p-values	Careful Excavation	Core
Shovel	0.8593	0.1342
Careful Excavation		0.1652
Core		

No significant difference between saturated sand collection methods.

Which component of the reservoir is the least variable for sampling?

E. coli variability in the sand

 Unsaturated and saturated sand are equally variable (p=0.232)

Variability in sand and pore water

 Sand (unsaturated and saturated) is more variable than pore water (p<0.001)

Conclusions

When considering data for individual beaches,

- No statistical difference between E. coli concentrations when comparing sampling methods
- The sampling method used affects the amount of E. Coli released from the sand into the pore water

Conclusions

When considering data for all beaches,

- sampling pore water using a drive point results in lowest observed concentrations
- unsaturated sand has higher concentrations than saturated sand
- the top ~1 cm of unsaturated sand has more E. coli than the top ~5cm
- *E. coli* concentrations in the sand are more variable than in pore water

Acknowledgements

Supporting organizations:

Health Canada

Santé Canada

